Examining Small-scale Geographic Estimates from the American Community Survey 5-year Data

Robert Kominski
Thom File
Social, Economic and Household Statistics
Division (SEHSD)
U.S. Census Bureau

Question:

- How good (or bad) are small-scale ACS data?
- Uses 5-year data file (2005-2009)

Secondary Question:

How difficult (or easy) will it be to use the ACS data to actually answer research questions?

Approach

- 1. Identify a typical analytic "problem" that an applied researcher might encounter and then try to answer it
- 2. Evaluate this process and the results

Evaluation

How do we determine quality of estimates?

1.Statistical – Coefficients of variation CV = (SE/Estimate)

2. Substantive – Difficult to quantify; visual examination (maps) of a collection of estimates

Important to pay attention to BOTH methods of evaluation

Problem

High school dropouts in Washington, D.C.

- How bad is the problem?
- Is the problem geographically focused?
- Can ACS data differentiate areas of the city?

Figure 1: D.C. Tract Map with Tract Identification Numbers

USCENSUSBUREAU

Reminder

- Important to evaluate from the perspective of a researcher NOT employed by the Census Bureau
 - Must use publicly available data
- Major focus on ease of use we want to minimize any additional computations ("The mayor needs it NOW!")

Data

- PUMS option provides lots of analytical control, but not good for small geographies (PUMA=100k)
- Focus instead on ACS "pretabulated" data

- Tables in either AFF or data download
- Data provided down to tract/block group

Figure 2: Example of Table B14005 for D.C. Tract 1

 Table provides estimate of 16-19 year olds, not enrolled and not HS grads, by gender

	Estimate	Margin of Error
Total:	422	+/-222
Male:	214	+/-204
Enrolled in school:	162	+/-121
Employed	33	+/-31
Unemployed	39	+/-65
Not in labor force	90	+/-51
Not enrolled in school:	52	+/-87
High school graduate:	0	+/-132
Employed	0	+/-132
Unemployed	0	+/-132
Not in labor force	0	+/-132
Not high school graduate:	52	(+/-87
Employed	13	+/-2:
Unemployed	13	+/-22
Not in labor force	26	+/-4;
Female:	208	+/ -88
Enrolled in school:	175	+/-74
Employed	14	+/-2
Unemployed	23	+/-20
Not in labor force	138	+/-63
Not enrolled in school:	33	+/-4!
High school graduate:	28	+/-42
Employed	28	+/-42
Unemployed	0	+/-132
Not in labor force	0	+/-13;
Not high school graduate:	5	4/-12
Employed	5	+/-12
Unemployed	0	+/-133
Not in labor force	0	+/-133

User must combine estimates and convert to a percentage, then recompute standard error as a percentage

Source: U.S. Census Bureau, 2005-2009 American Community Survey

Several Analytic Possibilities:

- Persons 18-24 without a HS degree
- Persons 25+ with a HS degree
- Persons 18-24 with a HS degree
- Census 2000: Persons 25+ with a HS degree

Figure 3: Example of Table B15001 for D.C. Tract 1

 Table provides estimate of 18-24 year olds, not HS grads, by gender

USCENSUSBUREAU

Helping You Make Informed Decisions

Figure 4: Example of Table S1501 for D.C. Tract 1

 Table provides <u>percentage</u> estimate of 18-24 year olds, not HS grads & <u>percentage</u> estimate of 25+ year olds, HS grads

Direct estimates. No computations required!

- Subject Definitions
- Quality Measures

Cubicat	Total	Margin of Error	Mala	Margin of Error	Eamala	Margin of Error
Subject	Total	Margin of Error	Male	Margin of Error	Female	Margin of Error
Population 18 to 24 years	545	+/-201	192	+/-137	353	+/-130
Less than high school graduate	27.3%	+/-14.4	20.3%	+1-27.4	31.2%	+/-15.9
High school graduate (includes equivalency)	38.7%	+/-16.4	39.6%	+/-28.4	38.2%	+/-18.5
Some college or associate's degree	27.3%	+/-18.2	40/1%	+/-26.0	20.4%	+/-18.5
Bachelor's degree or higher	6.6%	+/-7.6	0.0%	+/-18.7	10.2%	+/-11.2
Population 25 years and over	3,419	+/-326/	1,575	+/-254	1,844	+/-219
Less than 9th grade	14.6%	+/-5/5	19.0%	+/-10.4	10.9%	+/-3.8
9th to 12th grade, no diploma	11.9%	+1/4.2	12.6%	+/-5.7	11.3%	+/-5.6
High school graduate (includes equivalency)	29.9%	<i>+1-</i> 5.9	27.2%	+/-7.4	32.1%	+/-7.8
Some college, no degree	16.3%	+/-4.0	11.8%	+/-5.4	20.2%	+/-6.1
Associate's degree	7.8%	+/-3.7	9.3%	+/-6.0	6.4%	+/-3.5
Bachelor's degree	10.5%	+/-3.8	8.0%	+/-5.3	12.6%	+/-4.7
Graduate or professional degree	9.0%	+/-4.8	12.0%	+/-9.6	6.5%	+/-4.1
Percent high school graduate or higher	73.5%	+/-6.3	68.4%	+/-11.1	77.8%	+/-6.5
Percent bachelor's degree or higher	19.5%	+/-5.2	20.0%	+/-8.6	19.1%	+/-5.6

USCENSUSBUREAU

Helping You Make Informed Decisions

Three Things to Examine:

- The estimates themselves

- Number of sample cases (NOT publicly available
 - Coefficients of variation(CV = SE/EST)

Estimates of High School Completion (or not)

Sample Data Counts

Coefficients of Variation

- Smaller samples yield fewer cases of analytic interest
- Changing the sample increased the analytic sample (the numerator)
- -Changing the universe also increased the analytic sample
- -CV's fall whenever S.E. drops or the estimate increases

How well do our measures correlate with one another?

- Measure 1 -- 2005-9 ACS Dropout level, ages 18-24
- Measure 2 -- 2005-9 ACS High school completion, ages 25+
- Measure 3 -- Census 2000 High school completion, ages 25+
- Measure 4 2005-9 ACS High school completion, ages 18-24

	M1	M2	M3	M4
M1	*	520	525	-1.00
M2		*	.826	.520
М3			*	.525
M4				*

Conclusions

- Small-scale geographic ACS data appear to be fairly robust
- Users will need to spend time thinking of the best way to approach their problem, but if they can find data that fit, small area geographic questions can be addressed
- Substantively, data are NOT misleading, particularly when considered in the proper context

Contact Information

U.S. Census Bureau
Social, Economic and Household Statistics
Division

Robert Kominski
robert.a.kominski@census.gov
Thom File
thomas.a.file@census.gov